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White-Noise and Geometrical Optics Limits of
Wigner–Moyal Equation for Beam Waves in Turbulent
Media II: Two-Frequency Formulation
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We introduce two-frequency Wigner distribution in the setting of parabolic
approximation to study the scaling limits of the wave propagation in a turbulent
medium at two different frequencies. We show that the two-frequency Wigner
distribution satisfies a closed-form equation (the two-frequency Wigner–Moyal
equation). In the white-noise limit we show the convergence of weak solutions of
the two-frequency Wigner–Moyal equation to a Markovian model and thus prove
rigorously the Markovian approximation with power-spectral densities widely
used in the physics literature. We also prove the convergence of the simultaneous
geometrical optics limit whose mean field equation has a simple, universal form
and is exactly solvable.

KEY WORDS: Two-frequency Wigner distribution; martingale; geometrical
optics; turbulent media.

1. INTRODUCTION

High-data-rate communication systems at millimeter and optical frequen-
cies, remote sensing and detection and the astronomical imaging all
require understanding of stochastic pulse propagation. Whether the back-
ground random medium is dispersive (such as electromagnetic waves in
the ionosphere, interplanetary and interstellar media) or non-dispersive
(such as electromagnetic waves in the atmosphere) analysis of pulsed
signal propagation is usually based on spectral decomposition of the
time-dependent signal into time-harmonic wave fields.

In this formulation, the complete information about transient propa-
gation requires a solution for the statistical moments of the wave field at
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different frequencies and locations. In particular the two-frequency mutual
coherence provides a measure of the coherence bandwidth. In the context
of optical wave propagating through the atmosphere, analysis accounting
for multiple scattering and long propagation distances are based on the
paraxial equation for the complex amplitude and the Markov approxi-
mation.(9,14) In this framework, a complete set of two-frequency moment
equations can be derived.

The purposes of this work are first to establish a general two-
frequency framework (without Markov approximation) in terms of the
two-frequency Wigner distribution, secondly, to use this framework to
prove rigorously the Markov approximation in the white-noise scaling
limit and thirdly to obtain the geometrical optics limit of the white-noise
model. One of the main features (Theorems 1 and 2, Section 3) of our
approach is the closed form Eq. (42) for the mean two-frequency Wigner
distribution in the geometrical optics limit, which takes a universal form
and is exactly solvable, (see Appendix B).

All of these will be carried out for the random turbulent medium with
a power-law spectrum. This has been accomplished for the one-frequency
setting in ref. 5; the present work is the generalization of the previous
approach to the two-frequency setting. Although here we will be treating,
as an example, the case of optical wave propagating through the turbulent
atmosphere, our approach is entirely suitable for dispersive and/or dissipa-
tive media after proper modification of the refractive index field to include
frequency dependence and/or lossiness.

In the paraxial approximation (9,14) for the time-harmonic compo-
nent the wave amplitude �j , j =1,2, at two different wavenumbers kj are
given by the solutions of the parabolic wave equation, which after non-
dimensionalization with respect to some reference lengths Lz and Lx in
the longitudinal and transverse directions, respectively, has this form

i
∂�j

∂z
+ γ

2k̃j

��j + k̃j k0Lzñ(zLz,xLx)�j =0, j =1,2, (1)

where k̃j =kj /k0, j =1,2 are the normalized wavenumbers with respect to
the central wavenumber k0 and γ is the Fresnel number

γ = Lz

k0L
2
x

. (2)

Here ñ(�x), �x = (z,x)∈R
d+1 is the relative fluctuation of the refractive index

field, which is a homogeneous, square-integrable random field and, as in
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ref. 5 is assumed to have a spectral density �(�k) satisfying the upper bound

�(�k)�K(L−2
0 +|�k|2)−H−1/2−d/2

(
1+�−2

0 |k|2
)−2

�k = (ξ,k)∈R
d+1, H ∈ (0,1) (3)

for some positive constant K <∞ where L0 and �0 in (3) are, respectively,
the outer and inner scales of the turbulent medium and H is the Hurst
exponent of the random field. A relevant example is the generalized von
Kármán spectral density(12) with H =1/3.

In terms of the non-dimensional parameters

ε =
√

Lx

Lz

, η= Lx

L0
, ρ = Lx

�0
,

we rewrite (1) as

i
∂�ε

j

∂z
+ γ

2k̃j

��ε
j + k̃j

γ

µ

ε
V
( z

ε2
,x
)

�ε
j =0, �ε

j (0,x)=�j,0(x), j=1,2

(4)

with

µ= σLH
x

ε3
, (5)

where σ the standard variation of the homogeneous field ñ(z,x) and V is
the normalized refractive index field with a spectral density satisfying the
upper bound

�η,ρ(�k)�K(η2 + |�k|2)−H−1/2−d/2
(

1+ρ−2|�k|2
)−2

,

�k ∈R
d+1, H ∈ (0,1) (6)

for some positive constant K.
The white-noise scaling corresponds to ε→0 with a fixed µ. For conve-

nience we set µ=1. If the observation scales Lz and Lx are the longitudinal
and transverse scales, respectively, of the wave beam then ε�1 corresponds
to a long, narrow wave beam. The white-noise scaling limit of Eq. (4) is ana-
lyzed in refs. 3 and 6. The limit γ →0 corresponds to the geometrical optics
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limit. The parabolic approximation has been widely used in the literature
on waves in turbulent media (see for example refs. 9 and 14 and the ref-
erences therein). But to our knowledge the parabolic approximation of the
reduced wave equation has not been proved in the present context. However,
see ref. 2 for an interesting result of a simultaneous limit of parabolic and
white-noise scaling for a layered medium with ñ= ñ(z).

Although we do not assume isotropic spectral densities, the spectral
density always satisfies the basic symmetry:

�(η,ρ)(ξ,k)=�(η,ρ)(−ξ,k)=�(η,ρ)(ξ,−k), ∀(ξ,k)∈R
d+1 (7)

because the refractive-index field is real-valued. We also assume that
Vz(x)≡V (z,x) is a centered, square-integrable, z-stationary and x-homo-
geneous process with the (partial) spectral representation

Vz(x)=
∫

exp (ip ·x)V̂z(dp), (8)

where the process V̂z(dp) is the z-stationary orthogonal spectral measure
satisfying

E

[
V̂z(dp)V̂z(dq)

]
= δ(p+q)

[∫
�(w,p)dw

]
dp dq. (9)

We do not assume the Gaussian property but instead a sub-Gaussian
property (see Section 3.2 for precise statements).

1.1. Wigner Distribution and Wigner–Moyal Equation

We introduce two-frequency Wigner distributions

Wε
z (x,p)= 1

(2π)d

∫
e−ip·y�ε

1


z,

x√
k̃1

+ γ y

2
√

k̃1


�ε∗

2


z,

x√
k̃2

− γ y

2
√

k̃2


dy (10)

and its complex conjugate Wε∗ which are ideally suited for analyzing the
two-frequency problem.

The following bounds can be derived easily from (10)

‖Wε
z ‖∞ �



√

k̃1k̃2

2γπ




d

‖�ε
1(z, ·)‖2‖�ε

2(z, ·)‖2,

‖Wε
z ‖2 =



√

k̃1k̃2

2γπ




d/2

‖�ε
1(z, ·)‖2‖�ε

2(z, ·)‖2.
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Hence

‖Wε
z ‖∞ �



√

k̃1k̃2

2γπ




d

‖�1(0, ·)‖2‖�2(0, ·)‖2, (11)

‖Wε
z ‖2 = ‖W0‖2 (12)

The Wigner distribution has the following obvious properties.

∫
Wε

z (x,p)eip·ydp = �ε
1


z,

x√
k̃1

+ γ y

2
√

k̃1


�ε∗

2


z,

x√
k̃2

− γ y

2
√

k̃2


 (13)

1
(2π)d

∫

Rd
Wε

z (x,p)e−ix·q dx =


√

k̃1k̃2

γ




d

�̂ε
1


z,

p
√

k̃2

γ
+
√

k̃1q

2


 �̂ε∗

2


z,

p
√

k̃2

γ
−
√

k̃1q

2


 .

(14)

The Wigner distribution Wε
z satisfies the Wigner–Moyal equation

∂Wε
z

∂z
+p ·∇xWε

z + 1
ε
Lε

zW
ε
z =0 (15)

with the initial data

W0(x,k)= 1
(2π)d

∫
eik·y�1,0


 x√

k̃1

+ γ y

2
√

k̃1


�∗

2,0


 x√

k̃2

− γ y

2
√

k̃2


dy,

(16)

where the operator Lε
z is formally given as

Lε
zW

ε
z = i

∫
γ −1


eiq·x/

√
k̃1 k̃1W

ε
z


x,p+ γ q

2
√

k̃1




− eiq·x/
√

k̃2 k̃2W
ε
z


x,p− γ q

2
√

k̃2




 V̂

( z

ε2
, dq

)
.
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Equation (15) can be formally derived as follows. Differentiating (10) w.r.t.
z and using (4) we have

∂Wε
z

∂z
(x,p)= 1

(2π)d

∫
e−iy·p


iγ

2k̃1
��1


z,

x√
k̃1

+ γ y

2
√

k̃1


�∗

2


z,

x√
k̃2

− γ y

2
√

k̃2




− iγ

2k̃2
�1


z,

x√
k̃1

+ γ y

2
√

k̃


��∗

2


z,

x√
k̃2

− γ y

2
√

k̃2




dy

+ 1
(2π)d

∫
e−iy·p

[
ik̃1

γ
V


 z

ε2
,

x√
k̃1

+ γ y

2
√

k̃1


�1


z,

x√
k̃1

+ γ y

2
√

k̃1




×�∗
2


z,

x√
k̃2

− γ y

2
√

k̃2


− ik̃2

γ
V


 z

ε2
,

x√
k̃2

− γ y

2
√

k̃2




×�1


z,

x√
k̃1

+ γ y

2
√

k̃1


�∗

2


z,

x√
k̃2

− γ y

2
√

k̃2



]
dy,

which can be written as

∂Wε
z

∂z
(x,p)

= 1
(2π)d

∫
e−iy·p


 i√

k̃1

∇y ·

∇�1


z,

x√
k̃1

+ γ y

2
√

k̃1




�∗

2


z,

x√
k̃2

− γ y

2
√

k̃2




+ i√
k̃2

�1


z,

x√
k̃1

+ γ y

2
√

k̃1


∇y ·


∇�∗

2


z,

x√
k̃2

− γ y

2
√

k̃2






dy

+ 1
(2π)d

∫
e−iy·p

[
ik̃1

γ

∫
dV̂

( z

ε2
,q
)

eiq·(x+γ y/2)k̃
−1/2
1 �1


z,

x√
k̃1

+ γ y

2
√

k̃1




×�∗
2


z,

x√
k̃2

− γ y

2
√

k̃2


− ik̃2

γ

∫
dV̂

( z

ε2
,q
)

eiq·(x−y/2)k̃
−1/2
2

×�1


z,

x√
k̃1

+ γ y

2
√

k̃1


�∗

2


z,

x√
k̃2

− γ y

2
√

k̃2



]
dy
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by using the spectral representation (8). Integrating by parts and express-
ing the right side in terms of Wε

z we obtain Eq. (15). Note the cancellation
of the term

1
(2π)d

∫
e−iy·p iγ

2
√

k̃1k̃2

∇�1


z,

x√
k̃1

+ γ y

2
√

k̃1


 ·∇�∗

2


z,

x√
k̃2

− γ y

2
√

k̃2


dy

in the process of integrating by parts.
The complex conjugate Wε

z
∗(x,p) satisfies a similar equation

∂Wε
z

∗

∂z
+p ·∇xWε

z
∗ + 1

ε
Lε

z
∗
Wε

z
∗ =0, (17)

where

Lε
z
∗
Wε

z
∗ = i

∫
γ −1


eiq·x/

√
k̃2 k̃2W

ε
z

∗

x,p+ γ q

2
√

k̃2




− eiq·x/
√

k̃1 k̃1W
ε
z

∗

x,p− γ q

2
√

k̃1




 V̂

( z

ε2
, dq

)
.

We use the following definition of the Fourier transform and inversion:

Ff (p) = 1
(2π)d

∫
e−ix·pf (x)dx

F−1g(x) =
∫

eip·xg(p)dp,

when making a partial (inverse) Fourier transform on a phase-space func-
tion we will write F1 (resp. F−1

1 ) and F2 (resp. F−1
2 ) to denote the (resp.

inverse) transform w.r.t. x and p, respectively.
In this paper we consider the weak formulation of the Wigner–Moyal

equation: To find Wε
z ∈C([0,∞);L2

w(R2d)) such that ‖Wε
z ‖2 �‖W0‖2,∀z>

0, (cf. Eq. (12) and Section 1.2) and

〈
Wε

z , θ
〉−〈W0, θ〉 =

∫ z

0

〈
Wε

s ,p ·∇xθ
〉
ds + 1

ε

∫ z

0

〈
Wε

s ,Lε∗
s θ

〉
ds, ∀θ ∈S,

(18)
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where

S =
{
θ(x,p)∈L2(R2d);F−1

2 θ(x,y)∈C∞
c (R2d)

}
.

Here and below L2
w(R2d) is the space of complex-valued square integrable

functions on the phase space R
2d endowed with the weak topology and

the inner product

〈W1,W2〉=
∫

W ∗
1 (x,p)W2(x,p)dx dp.

We define for every realization of V ε
z the operator Lε

z
∗ to act on a phase-

space test function θ as

Lε
z
∗
θ(x,p)≡−iγ −1F2

[
δ21V

ε
z (x,y)F−1

2 θ(x,y)
]

(19)

with the difference operator δ21 given by

δ21V
ε
z (x,y) ≡ k̃1V

ε
z


 x√

k̃2

+ γ y

2
√

k̃2


− k̃2V

ε
z


 x√

k̃1

− γ y

2
√

k̃1


 (20)

V ε
z (x) = Vz/ε2(x). (21)

We define Lε
z in the same way.

A main advantage of the formulation with the Wigner distribution
is the possibility of obtaining a closed form Eq. (42) in the geometri-
cal optics limit. Another advantage is its capability of dealing with the
mixed-state initial data, which are the convex combinations of the pure-
state Wigner distribution (10).

1.2. Existence of Weak Solutions

The existence of weak solutions can be established by the weak com-
pactness argument as follows. Without loss of generality we set ε =1.

First, we introduce truncation N <∞

V (N)(z,x)= INV (z,x),
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where IN is the characteristic function of the set {|V (z, x)|<N}. For such
bounded VN the corresponding operator as given by

L(N)
z W ⊗L(N)∗

z W ∗ ≡ iγ −1F2

([
δ12V

(N)
z F−1

2

]
W ⊗

[
δ21V

(N)
z F−1

2 W ∗
])

is a bounded skew-adjoint operator on L2(R2d)⊗L2(R2d). Hence the cor-
responding system of Wigner–Moyal equations gives rise to a C0-group of
unitary maps on L2 ⊗ L2. Let us denote the solution by (W

(N)
z ,W

(N)∗
z ).

Passing to the limit N →∞ by selecting a weakly convergent subsequence
we obtain a L2-weak solution for the Wigner–Moyal equation with the
truncation removed if V is locally square-integrable as is assumed here.
The limiting solution Wz has a L2-norm equal to or less than that of W0.

Moreover, from Eq. (18), it is easy to see that
〈
W

(N)
z , θ

〉
is equi-con-

tinuous on any compact subset of z∈R. By Arzela–Ascoli lemma, 〈Wz, θ〉
is z-continuous almost surely. Because

〈
W

(N)
z , θ

〉
is adapted to the filtra-

tion of Vz and the convergence is almost sure, the resulting solution Wz is
adapted to the filtration of Vz.

We will not address the uniqueness of solution for the Wigner–Moyal
Eq. (18) but we will show that as ε → 0 any sequence of weak solutions
to Eq. (18) converges in a suitable sense to the unique solution of a mar-
tingale problem (see Theorems 1 and 2).

1.3. Geometrical Optics Limit

Consider the simultaneous limit

γ →0, k̃1, k̃2 → k̃ �=0 (22)

such that

k̃2 − k̃1

γ
= (k2 −k1)L

2
x

Lz

→β �0. (23)

Here the parameter β < ∞ has the physical meaning of a normalized
bandwidth. We still assume W0(x,p)∈L2(R2d) independent of γ .
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When acting on the test function space S, Lε
z has the following limit

lim
γ→0

Lε
z
∗
θ(x,p) = −F2

[
∇xV ε

z (x) ·
[
iyF−1

2 θ(x,y)
]]

= −
√

k̃∇V ε
z

(
x√
k̃

)
·∇pθ(x,p)+ iβθ(x,p)

×
[
V ε

z

(
x√
k̃

)
− x

2
√

k̃
·∇V ε

z

(
x√
k̃

)]
(24)

in the L2-sense for all θ ∈S and all locally square-integrable V ε
z .

2. THE WHITE-NOISE MODELS

Now we formulate the solutions for the white-noise model as the solu-
tions to the corresponding martingale problem: Find the law Q on Z =
C([0,∞);L2

w(R2d)) such that for ζ ∈ Z and Wz(ω) ≡ ζ(z), z � 0 we have
that Q

(
W0(ω)=W0 ∈L2(R2d)

)=1 and that

f (〈Wz, θ〉) −
∫ z

0

{
f ′(〈Ws, θ〉) [〈Ws,p ·∇xθ〉+ 〈

Ws,Q0θ
〉]

+f ′′(〈Ws, θ〉) 〈Ws,KθWs

〉 }
ds

with KθWs =
∫

Q(θ ⊗ θ)(x,p,y,q)Ws(y,q) dy dq

is a martingale for each f ∈C∞(R).

Here, in the case of the white-noise model for the Wigner–Moyal
equation (Theorem 1), the covariance operators Q,Q0 are defined as

Q0θ(x,p)

=
∫

�∞
η (q)γ −2

[
k̃1k̃2e

i(k̃
−1/2
1 −k̃

−1/2
2 )q·xθ(x,p− (k̃

−1/2
1 + k̃

−1/2
2 )γ q/2)

+k̃1k̃2e
−i(k̃

−1/2
1 −k̃

−1/2
2 )q·xθ(x,p+(k̃

−1/2
1 +k̃

−1/2
2 )γ q/2)−(k̃2

1 + k̃2
2)θ(x,p)

]
dq.

(25)
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Q(θ ⊗ θ)(x,p,y,q)

=
∫

�∞
η (p′)γ −2

[
eip′·xk̃

−1/2
1 k̃1θ(x,p− k̃

−1/2
1 γ p′/2)

−eip′·xk̃
−1/2
2 k̃2θ(x,p+ k̃

−1/2
2 γ p′/2)

]

×
[
e−ip′·yk̃

−1/2
2 k̃2θ(y,q − k̃

−1/2
2 γ p′/2)−e−ip′·yk̃

−1/2
1 k̃1θ(y,q+k̃

−1/2
1 γ p′/2)

]
dp′

(26)

and, in the case of the geometrical optics white-noise limit (Theorem 2),

Q0θ = −k̃∇p ·D(0) ·∇pθ − iβx ·D(0) ·∇pθ +β2D0(0)θ + β2

4k̃
x ·D(0) ·xθ (27)

Q(θ ⊗ θ)(x,p,y,q)

=
∫

�ρ
η(q′)eiq′·(x−y)k̃−1/2

[
k̃1/2q′ ·∇p +β − i2−1k̃−1/2βq′ ·x

]

⊗
[
k̃1/2q′ ·∇q −β − i2−1k̃−1/2βq′ ·y

]
dq′θ(x,p)⊗ θ(y,q)

= k̃∇pθ(x,p) ·D(x −y) ·∇qθ(y,q)− β2

4k̃
x ·D(x −y) ·yθ(x,p)θ(y,q)

−β2D0(x −y)θ(x,p)θ(y,q)+ k̃1/2βD′(x −y) · (∇q −∇p)θ(x,p)θ(y,q)

−i2−1β
[
y ·D(x −y) ·∇p +x ·D(x −y) ·∇q

]
θ(x,p)θ(y,q)

+i2−1k̃−1/2β2(x −y) ·D′(x −y)θ(x,p)θ(y,q) (28)

where

�ρ
η(q) ≡ �η,ρ(0,q), η�0, ρ �∞, (29)

D(x −y) =
∫

eiq·(x−y)k̃−1/2
�ρ

η(q)q ⊗q dq, (30)

D′(x −y) =
∫

eiq·(x−y)k̃−1/2
�ρ

η(q)q dq, (31)

D0(x −y) =
∫

eiq·(x−y)k̃−1/2
�ρ

η(q)dq. (32)

To obtain Eqs. (27) and (28) from (25) and (26), respectively, in the
narrow-band geometrical optics limits (22) and (23) we write

k̃1 = k̃ −βγ/2, k̃2 = k̃ +βγ/2.
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Using the approximation

k̃
−1/2
1 − k̃

−1/2
2 ≈ k̃−1/2

[
βγ

2k̃
+ 7

8

(
βγ

2k̃

)3
]

, (33)

k̃
−1/2
1 + k̃

−1/2
2 ≈ k̃−1/2

[
2+ 3

4

(
βγ

2k̃

)2
]

(34)

in (25) and expand

exp
[
±i(k̃

−1/2
1 − k̃

−1/2
2 )q ·x

]
and W(x,p± (k̃

−1/2
1 + k̃

−1/2
2 )γ q/2)

up to the second order in γ .
In the worst case scenario allowed by the bound (6) (cf. (60)) the

functions D,D′ and D0 have the following near and far field behaviors

D(x −y)=O(|x −y|2H−1), D′(x −y)=O(|x −y|2H ),

D0(x −y)=O(|x −y|2H+1)
(35)

for η=0, |x −y|�1 or ρ =∞, |x −y|�1. Hence the operators Q and Q0
are well-defined for any test function θ ∈S in the former case for any H ∈
(0,1), η > 0 or η = 0,H ∈ (0,1/2), and in the latter case for H ∈ (0,1),0 <

η<ρ <∞ or H ∈ (0,1/2),0=η<ρ <∞ or H ∈ (1/2,1),0<η<ρ =∞.
That the martingale problem as formulated with the special class of

test functions is sufficient to characterize the law Q follows from the
uniqueness result discussed in Section 2.2.

To see that (26) is square-integrable and well-defined for any L2(R2d)-
valued process Wz, we apply F−1

2 to (26) and obtain

F−1
2 KθWs(x,x′) = (2π)−dF−1

2 θ(x,x′)
∫

�∞
η (p′)F−1

2 θ(y,y′)F−1
2 Wz(y,−y′)γ −2

×
[
k̃2e

−ip′ ·(y−γ y′/2)k̃
−1/2
2 − k̃1e

−ip′ ·(y+γ y′/2)k̃
−1/2
1

]
(36)

×
[
k̃1e

ip′ ·(x+γ x′/2)k̃
−1/2
1 − k̃2e

ip′ ·(x−γ x′/2)k̃
−1/2
2

]
dy dy′ dp′.

The integral on the right side of (36) is bounded for any H ∈ (0,1), η > 0
or η=0,H <1/2. Hence the function F−1

2 KθWs(x,x′) has a compact sup-
port and is square-integrable. Similarly, one can show that (25) with (27)
and (28) is well defined for H ∈ (0,1), ρ <∞ or H >1/2, ρ =∞.
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In the geometrical optics limit,

F−1
2 KθWs(x,x′) = (2π)−dF−1

2 θ(x,x′)
∫

F−1
2 θ(y,y′)F−1

2 Wz(y,−y′)

×
[
−k̃x′ ·D(x −y) ·y′ − β2

4k̃
x ·D(x −y) ·y

−β2D0(x −y)+ k̃1/2βD′(x −y) · i(x′ −y′)
−2−1β

[
y ·D(x −y) ·x′ +x ·D(x −y) ·y′]

+i2−1k̃−1/2β2(x −y) ·D′(x −y)

]
dy d y′ (37)

In view of (35) we see that the right side of (37) has a compact sup-
port and is bounded for any H ∈ (0,1), ρ <∞ or H > 1/2, ρ =∞ or H <

1/2, ρ <∞.
The evolution equation for the two-frequency mutual coherence func-

tion

�12(z,x1,x2)=E[�1(z,x1)�2(z,x2)] (38)

in the literature(9) can be obtained by setting

x = 1
2
(

√
k̃1x1 +

√
k̃2x2), (39)

y = 1
γ

(

√
k̃1x1 −

√
k̃2x2) (40)

and applying F−1
2 to the mean field equation

∂W̄z

∂z
+p ·∇xW̄z = −Q∗

0W̄z, (41)

where

Q∗
0W̄z =

∫
�∞

η (q)γ −2
[
k̃1k̃2e

−i(k̃
−1/2
1 −k̃

−1/2
2 )q·xW̄z(x,p− (k̃

−1/2
1 + k̃

−1/2
2 )γ q/2)

+ k̃1k̃2e
i(k̃

−1/2
1 −k̃

−1/2
2 )q·xW̄z(x,p+ (k̃

−1/2
1 + k̃

−1/2
2 )γ q/2)

− (k̃2
1 + k̃2

2)W̄z(x,p)
]
dq.
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Neither (41) nor the resulting equation for �12 is exactly solvable and var-
ious approximations have been proposed (see refs. 4 and 13 and the refer-
ences therein).

The mean field equation in the geometrical optics limits (23) and (24)
has the universal form

∂W̄z

∂z
+p ·∇xW̄z = k̃∇p ·D(0) ·∇pW̄z(x,p)+ iβx ·D(0) ·∇pW̄z(x,p)

−β2D0(0)W̄z(x,p)− β2

4k̃
x ·D(0) ·xW̄z(x,p)

= −k̃

(
−i∇p + β

2k̃
x
)

·D(0) ·
(

−i∇p + β

2k̃
x
)

W̄z(x,p)

−β2D0(0)W̄z(x,p), (42)

which is exactly solvable and whose solution is presented in Appendix B.

2.1. White-Noise Models with Large-Scale Inhomogeneities

Our approach is also suitable for the situation where deterministic
large-scale inhomogeneities are present. One type of slowly varying, large-
scale inhomogeneities is multiplicative and can be modeled by a bounded
smooth deterministic function µ=µ(z,x) due to variability of any one of
the three factors in (5) The second type is additive and can be modeled by
adding a smooth background V0(z,x). Altogether we can treat the random
refractive index field of the general type

V0(z,x)+ µ(z,x)

ε
V
( z

ε2
,x
)

with a bounded smooth deterministic modulation µ(z,x) and background
V0(z,x). We describe the results below but omit the details of the argu-
ment for simplicity of presentation.

First we consider the case of deterministic, large-scale inhomogene-
ities of a multiplicative type which has µ, given by (5), as a bounded
smooth functionµ=µ(z,x). The resulting limiting process can be described
analogously as above except with the term �∞

η replaced by

�∞
η (k) −→ µ(z,x)µ(z,y)�∞

η (k) in Q,

�∞
η (k) −→ µ2(z,x)�∞

η (k) in Q0.

As a consequence the operator Q0 is no longer of convolution type.
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Next we add a slowly varying smooth deterministic background
V0(z,x) to the rapidly fluctuating field ε−1µ(z,x)V (ε−2z,x). Namely we
have

V0(z,x)+ µ(z,x)

ε
V
( z

ε2
,x
)

as the potential term in the parabolic wave equation (4).
The resulting martingale problem has an additional term

−
∫ z

0
〈Ws,L0θ〉 ds (43)

in the martingale formulation, where L0θ has the form

L0θ(x,p) = −iγ −1F2

[
δ21V0(z,x,y)F−1

2 θ(x,y)
]
,

(44)

δ21V0(z,x,y) = k̃1V0


z,

x√
k̃2

+ γ y

2
√

k̃2


− k̃2V0


z,

x√
k̃1

− γ y

2
√

k̃1




for γ >0 fixed in the limit, and the form

L0θ(x,p)

= −
√

k̃∇V0

(
z,

x√
k̃

)
·∇pθ(x,p)+ iβθ(x,p)

[
V0

(
z,

x√
k̃

)
− x

2
√

k̃
·∇V0

(
z,

x√
k̃

)]

(45)

in the geometrical optics limit.

2.2. Multiple-Point Correlation Functions

The martingale solutions of the limiting models are uniquely deter-
mined by their n-point correlation functions which satisfy a closed set of
evolution equations.

Using the function f (r)=rn in the martingale formulation and taking
expectation, we arrive after some algebra the following equation

∂F (n)

∂z
=

n∑
j=1

pj ·∇xj
F (n) +

n∑
j=1

Q0(xj ,pj )F
(n) +

n∑
j,k=1
j �=k

Q(xj ,pj ,xk,pk)F
(n)

(46)
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for the n-point correlation function

F (n)(z,x1,p1, . . . ,xn,pn)≡E [Wz(x1,p1) . . .Wz(xn,pn)] ,

where Q0(xj ,pj ) is the operator Q0 acting on the variables (xj ,pj ) and
Q(xj ,pj ,xk,pk) is the operator Q acting on the variables (xj ,pj ,xk,pk),
namely

Q(xj ,pj ,xk,pk)F
(n)

(
n∏

i=1

(xi ,pi )

)

= E





 ∏

i �=j,k

Wz(xi ,pi )



∫

�(η,∞)(0,q)γ −2

×
[
e−iq·xj k̃

−1/2
1 k̃1Wz(xj ,pj − k̃

−1/2
1 γ q/2)

−e−iq·xj k̃
−1/2
2 k̃2Wz(xj ,pj + k̃

−1/2
2 γ q/2)

]

×
[
eiq·yk k̃

−1/2
2 k̃2Wz(xk,pk−k̃

−1/2
2 γ q/2)

−eiq·yk k̃
−1/2
1 k̃1 Wz(xk,pk + k̃

−1/2
1 γ q/2)

]
dq


.

Equation (46) can be more conveniently written as

∂F (n)

∂z
=

n∑
j=1

pj ·∇xj
F (n) +

n∑
j,k=1

Q(xj ,pj ,xk,pk)F
(n) (47)

with the identification Q(xj ,pj ,xj ,pj )=Q0(xj ,pj ). The operator

Qsum =
n∑

j,k=1

Q(xj ,pj ,xk,pk) (48)

is a non-positive symmetric operator.
The uniqueness for Eq. (46) with any initial data

F (n)(z=0,x1,p1, . . . ,xn,pn)=E [W0(x1,p1) . . .W0(xn,pn)] , W0 ∈L2(R2d)
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in the case of the Wigner–Moyal equation can be easily established by
observing that the operator given by (48) is self-adjoint. For instance, for
n=2, we have that

F−1
2 QF (2)(x1,y1,x2,y2)=F−1

2 Q(x1,y1,x2,y2)F−1
2 F (2)(x1,y1,x2,y2),

where

F−1
2 F (2)(x1,y1,x2,y2) = E

[
F−1

2 Wz(x1,y1)F−1
2 Wz(x2,y2)

]

F−1
2 Q(x1,y1,x2,y2) =

∫
dq �(η,∞)(0,q)γ −2

[
k̃1e

iq·(x1−γ y1/2)k̃
−1/2
1

−k̃2e
iq·(x1+γ y1/2)k̃

−1/2
2

]

×
[
k̃2e

−iq·(x2+γ y2/2)k̃
−1/2
2 − k̃1e

−iq·(x2−γ y2/2)k̃
−1/2
1

]
.

Namely, in the (xj ,yj ) variables, the operator Qsum becomes the multi-
plication by a function which is dominated by the “diagonal terms” with
j =k

F−1
2 Q0(xj ,yj ) = −

∫
�(η,∞)(0,q)γ −2

∣∣∣k̃1e
iq·(xj −γ yj /2)k̃

−1/2
1

− k̃2e
iq·(xj +γ yj /2)k̃

−1/2
2

∣∣∣
2
dq (49)

and hence is non-positive. Therefore Qsum is a non-positive self-adjoint
operator on L2. The case with n>2 is similar.

Each of the two operators on the right side of (47) generates a unique
C0-semigroup of contractions on L2(R2nd) and, by the product formula,
their sum generates a unique C0-semigroup of contractions on L2(R2nd).
Standard theory for linear equations then yields the uniqueness result for
the weak solution of (47).

In the geometrical optics limit Q(xj ,pj ,xk,pk) in Eq. (47) takes the
form

F−1
2 Q(xj ,yj ,xk,yk) = −k̃yj ·D(xj −xk) ·yk − β2

4k̃
xj ·D(xj −xk) ·xk

−β2D0(xj −xk)+ k̃1/2βD′(xj −xk) · i(yj −yk)

−2−1β
[
xk ·D(xj −xk) ·yj +xj ·D(xj −xk) ·yk

]

+i2−1k̃−1/2β2(xj −xk) ·D′(xj −xk).

The uniqueness follows from the same argument as in the previous case.
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3. FORMULATION AND MAIN THEOREMS

3.1. Martingale Formulation

The tightness result (see below) implies that for L2 initial data the
limiting measure P is supported in C([0,∞);L2(R2d)). For tightness as
well as identification of the limit, the following infinitesimal operator Aε

will play an important role. Consider a special class of admissible func-
tions fz = f (

〈
Wε

z , θ
〉
), f ′

z = f ′(
〈
Wε

z , θ
〉
),∀f ∈C∞(R). We have the following

expression

Aεfz = f ′
z

[〈
Wε

z ,p ·∇xθ
〉+ 1

ε

〈
Wε

z ,Lε
z
∗
θ
〉]

. (50)

A main property of Aε is that

fz −
∫ z

0
Aεfs ds is a Fε

z -martingale, ∀f ∈D(Aε). (51)

Let Fε
z be the σ -algebras generated by {V ε

s , s � t} and E
ε
z the correspond-

ing conditional expectation w.r.t. Fε
z . Then we also have

E
ε
sfz −fs =

∫ z

s

E
ε
sAεfτ dτ ∀s <z a.s. (52)

(see ref. 10). Note that the process Wε
z is not Markovian and Aε is not its

generator. We denote by A the infinitesimal operator corresponding to the
unscaled process Vz(·)=V (z, ·).

3.2. Assumptions and Properties of the Refractive Index Field

As mentioned in the introduction, we assume that Vz(x) is a square-
integrable, z-stationary, x-homogeneous process with a spectral density
satisfying the upper bound (6).

Let Fz and F+
z be the sigma-algebras generated by {Vs : ∀s � z} and

{Vs :∀s � z}, respectively. The correlation coefficient rη,ρ(t) is given by

rη,ρ(t)= sup
h∈Fz

E[h]=0,E[h2]=1

sup
g∈F+

z+t

E[g]=0,E[g2]=1

E [hg] . (53)
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Lemma 1. The correlation coefficient rη,ρ(t) satisfies the inequality

|E [Ez[Vs(x)]Ez[Vt (y)]]| = |E [Ez[Vs(x)]Vt (y)]|
� rη,ρ(s − z)rη,ρ(t − z)E

[
V 2

z

]
, ∀s, t � z, ∀x,y ∈R

d .

Proof. Let

hs(x)=Ez[Vs(x)], gt (x)=Vt (x).

Clearly

hs ∈ L2(P,�,Fz),

gt ∈ ∈L2(P,�,F+
t )

and their second moments are uniformly bounded in x since

E[h2
s ](x) � E[g2

s ](x),

E[g2
s ](x) =

∫
�(ξ,q)dξ dq.

From Definition (53) we have

|E[hs(x)ht (y)]| = |E [hsgt ]| � rη,ρ(t − z)E1/2
[
h2

s (x)
]

E
1/2

[
g2

t

]
.

Hence by setting s = t first and the Cauchy–Schwartz inequality we have

E[h2
s (x)] � r2

η,ρ(s − z)E[g2
s ],

E [hs(x)ht (y)] � rη,ρ(t − z)rη,ρ(s − z)E[g2
t ], ∀s, t � z,∀x,y.

We assume

Assumption 1. The correlation coefficient rη,ρ(t) satisfies

∫ ∞

0
rη,ρ(s)ds <∞.
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Corollary 1. The formula

Ṽz(x)=
∫ ∞

z

Ez [Vs(x)] ds (54)

defines a square-integrable z-stationary, x-homogeneous process.

Proof. Let ω ∈ � denote the random element and τ�x, �x = (z,x) ∈
R

d+1 the translation operator acting on �. Then without loss of general-
ity we may assume that there exists a square-integrable function V defined
on � such that

Vz(x,ω)=V (τ�xω).

It suffices to show that the second moment of

Ṽ (ω)≡
∫ ∞

0
E0

[
V (τ(s,0)ω)

]
ds

is finite since

Ṽz(x,ω)= Ṽ (τ�xω), ∀�x = (z,x)∈R
d+1.

To this end we have

E

[
Ṽ 2
]

= E

[∫ ∞

0

∫ ∞

0
E0[Vs(0)]E0[Vt (0)]ds dt

]

= E

[∫ ∞

0

∫ ∞

0
E0[Vs(0)]Vt (0)ds dt

]

�
∫ ∞

0

∫ ∞

0
rη,ρ(s)rη,ρ(t)ds dtE[V 2

0 ],

which is finite by Assumption 1.

In the Gaussian case the correlation coefficient rη,ρ(t) equals the lin-
ear correlation coefficient given by

rη,ρ(t) = sup
g1,g2

∫
R(t − τ1 − τ2,k)g1(τ1,k)g2(τ2,k)dk dτ1 dτ2, (55)



White-Noise and Geometrical Optics Limits 563

where

R(t,k)=
∫

eitξ�(η,ρ)(ξ,k)dξ

and the supremum is taken over all g1, g2 ∈L2(Rd+1), which are supported
on (−∞,0]×R

d and satisfy the constraint
∫

R(t − t ′,k)g1(t,k)g∗
1(t ′,k)dtdt ′dk =

∫
R(t − t ′,k)g2(t,k)g∗

2(t ′,k)dt dt ′ dk =1,

(56)

in ref. 8. Alternatively, by the Paley–Wiener theorem we can write

rη,ρ(t) = sup
f1,f2

∫
eiξ tf1(ξ,k)f2(ξ,k)�η,ρ(ξ,k)dξ dk, (57)

where f1, f2 are elements of the Hardy space H2 of L2(�(η,ρ)dξdk)-
valued analytic functions in the upper half ξ -space satisfying the normal-
ization condition

∫
|fj (ξ,k)|2�(η,ρ)(ξ,k)dξdk =1, j =1,2.

There are various criteria for the decay rate of the linear correlation coeffi-
cients, see ref. 8.

Corollary 2. If Vz is a Gaussian random field and its linear corre-
lation coefficient rη,ρ(t) is integrable, then Ṽz is also Gaussian and hence
possesses finite moments of all orders.

This follows from the fact that the mapping from Vz to Ṽz is a
bounded linear operator on the Gaussian space.

The main property of Ṽz as a random function is that

AṼz =−Vz, a.s. z∈R. (58)

Since A commutes with the shift in x so the appearance of x in Eq. (58)
is suppressed.

We have the following simple relation

lim
λ→∞

E

[
Ṽzλ(x)Vzλ(y)

]
= lim

λ→∞

∫
ei(x−y)·p

∫
1
iξ

(
eizλξ −1

)
�(η,ρ)(ξ,p)dξ dp

= π

∫
ei(x−y)·p�(η,ρ)(0,p)dp, ∀z. (59)
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Assumption 2. For any η>0,

Rη = lim sup
ρ→∞

∫ ∞

0
rη,ρ(t)dt <∞

such that

lim sup
η→0

ηRη <∞.

For Gaussian fields with the generalized von Kármán spectrum(12)

�vk(�k)=2H−1�

(
H + d +1

2

)
η2H π−(d+1)/2(η2 +|�k|2)−H−1/2−d/2 (60)

a straightforward scaling argument with (57) shows that

rη,∞(t)= r1,∞(ηt)

hence

Rη =η−1R1.

This motivates Assumption 2. Set

�̃ε
z(k)≡ �̃ε−2z(ξ,k),

which is the spectral density of Ṽ ε
z (x)≡ Ṽz/ε2(x).

Define analogously to (19)

L̃ε∗
z θ(x,p)≡−iγ −1F2

[
δ21Ṽ

ε
z (x,y)F−1

2 θ(x,y)
]

(61)

with

δ21Ṽ
ε
z (x,y) ≡ k̃1Ṽ

ε
z (

x√
k̃2

+ γ y

2
√

k̃2

)− k̃2Ṽ
ε
z (

x√
k̃1

− γ y

2
√

k̃1

). (62)

We also need to know the first few moments the random fields
involved. The case of Gaussian fields motivates the following assumption
of the sixth order sub-Gaussian property.
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Assumption 3.

sup
|y|�L

E
[
δ21V

ε
z (y)

]4 � C1 sup
|y|�L

E
2 [δ21V

ε
z

]2
(y), (63)

sup
|y|�L

E

[
δ21Ṽ

ε
z

]4
(y) � C2 sup

|y|�L

E
2
[
δ21Ṽ

ε
z

]2
(y), (64)

sup
|y|�L

E

[[
δ21V

ε
z

]2
[
δ21Ṽ

ε
z

]4
]

(y) � C3

(
sup

|y|�L

E
[
δ21V

ε
z

]2
(y)

)

×
(

sup
|y|�L

E
2
[
δ21Ṽ

ε
z

]2
(y)

)
(65)

for all L < ∞, where the constants C1,C2 and C3 are independent of
ε, η, ρ, γ .

From (19) and (61) we can form the iteration of operators Lε
zL̃ε∗

z

Lε
z
∗L̃ε∗

z θ(x,p)=−γ −2F2

[
δ21V

ε
z (x,y)δ21Ṽ

ε
z (x,y)F−1

2 θ(x,y)
]
,

The operator Lε
zL̃ε∗

z θ is well-defined if δ21V
ε
z and δ21Ṽ

ε
z are locally square-

integrable. Other iterations of Lε
z and L̃ε∗

z allowed by Assumption 3 can be
similarly constructed.

Assumption 4. For every θ ∈S, there exists a random constant C5
such that

sup
z<z0

‖δ21Ṽ
ε
z F−1

2 θ‖4 � C5√
ε

sup
z∈[0,z0]

|x|,|y|�L

E
1/2|δ21Ṽ

ε
z (x,y)|2,

∀θ ∈S, ε, η, γ �1�ρ (66)

with C5 possessing finite moments and depending only on θ, z0, where L is the
radius of the ball containing the support of F−1

2 θ . cf. Lemma 2 and (67).

For a Gaussian random field, Assumption 4 is readily satisfied by Lemma 2
and Borell’s inequality(1)

sup
z<z0

‖δ21Ṽ
ε
z F−1

2 θ‖4 � ‖F−1
2 θ‖4 sup

z∈[0,z0]
|x|,|y|�L

|δ21Ṽ
ε
z (x,y)|

� C5 log
( z0

ε2

)
sup

z∈[0,z0]
|x|,|y|�L

E
1/2|δ21Ṽ

ε
z (x,y)|2,

∀η, γ �1�ρ, (67)

where the random constants C5 has a Gaussian-like tail.
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Note that with γ or ρ held fixed the first term on the right side of
(66) is always O(1). Compared to the corresponding condition (67) for the
Gaussian field condition (66) allows for certain degree of intermittency in
the refractive index field.

As we have seen above, most of the assumptions here are motivated
by the Gaussian case and we have formulated them in such a way as to
allow some level of non-Gaussian fluctuation.

3.3. Main Theorems

Theorem 1. Let V ε
z be a z-stationary, x-homogeneous, almost surely

locally bounded random process with the spectral density satisfying the
bound (6) and Assumptions 1–4. Let γ >0 be fixed.

(i) Let η be fixed and ρ be fixed or tend to ∞ as ε →0 such that

lim
ε→0

ερ2−H =0. (68)

Then any weak solutions Wε ∈ C([0,∞);L2(R2d)] of the Wigner–Moyal
equation with the initial condition W0 ∈L2(R2d) and ‖Wε

z ‖2 �‖W0‖2,∀z>

0 converge in probability in the space C([0,∞);L2
w(R2d)) to that of the

corresponding Gaussian white-noise model with the covariance operators
Q and Q0 as given by (25) and (26), respectively (see also (43) and (44)).
The statement holds true for any H ∈ (0,1).

(ii) Suppose additionally that H <1/2 and η=η(ε)→0 such that

lim
ε→0

εη−1(η−1 +ρ2−H )=0. (69)

Then the same convergence holds true.

Theorem 2 concerns a similar convergence to the solution of a Gauss-
ian white-noise model for the Liouville equation.

Theorem 2. Let V ε
z be a z-stationary, x-homogeneous, almost surely

smooth, locally bounded random process with the spectral density satisfy-
ing the bound (6) and Assumptions 1–4.

Let γ =γ (ε)→0, k̃1, k̃2 → k̃ as ε →0 such that

lim
ε→0

γ −1(k̃2 − k̃1)=β

for some finite, positive constant β. Then under any of the following three
sets of conditions
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(i) ρ <∞ and η>0 held fixed;

(ii) H >1/2, η>0 fixed and ρ =ρ(ε)→∞ as ε →0 such that

lim
ε→0

ερ2−H =0; (70)

(iii) H <1/2, ρ <∞ fixed and η=η(ε)→0 such that

lim
ε→0

εη−2 =0 (71)

any weak solutions Wε ∈ C([0,∞);L2(R2d)] of the Wigner–Moyal equa-
tion with the initial condition W0 ∈ L2(R2d) and ‖Wε

z ‖2 � ‖W0‖2,∀z > 0
converge in probability in the space C([0,∞);L2

w(R2d)) to the martingale
solution of the Gaussian white-noise model with the covariance operators
Q and Q0 as given by (27) and (28), respectively (see also (43) and (45)).

Remark 1. Because
〈
Wε

z , θ
〉

is uniformly bounded by ‖W0‖2‖θ‖2 we
have from the above convergence theorems the convergence of moments,
namely for any 0� z1 � z2 � · · ·� zn,

lim
ε→0

E
{〈

Wε
z1

, θ
〉 · · · 〈Wε

zn
, θ
〉}=E

{〈
Wz1 , θ

〉 · · · 〈Wzn, θ
〉}

.

Note that the Kolmogorov value H = 1/3 is covered by the regimes of
Theorems 1 and 2(i), (iii).

4. PROOF OF THEOREM 1 AND 2

The argument is similar to that for the one-frequency setting in ref. 5.
We reproduce it here with minor adaption to the two-frequency setting for
the sake of completeness and the convenience of the reader.

First we establish some technical results for the proof of the theorems.

Lemma 2. (Appendix A) For each z0 < ∞ there exists a positive
constant C̃ <∞ such that

sup
|z|�z0
|y|�L

E

[(
δ21V

ε
z

)2
]
(y) � C̃γ 2

∣∣∣min (γ −1, ρ)

∣∣∣
2−2H

sup
|z|�z0

E

[
Ṽ ε

z (x)
]2

� C̃η−2−2H
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sup
|z|�z0
|y|�L

E

[(
δ21Ṽ

ε
z

)2
]

(y) � C̃η−2γ 2|min (ρ, γ −1)|2−2H

sup
|z|�z0
|y|�L

∣∣∣∣∇yE

[
δ21Ṽ

ε
z

]2
(y)

∣∣∣∣ � C̃η−2γ 2ρ1−H |min (ρ, γ −1)|1−H

sup
|z|�z0

E‖p ·∇x(L̃ε∗
z θ)‖2

2 � C̃η−2ρ4−2H , θ ∈S

for all H ∈ (0,1), ε, γ, η � 1 � ρ,x,y ∈ R
d , where the constant C̃ depends

only on z0, L and θ .

The following estimates can be obtained from Lemma 2 and Assump-
tion 3.

Corollary 3.

E

[
‖Lε

z
∗
θ(x,p)L̃ε∗

z θ(y,q)‖2
2

]
� C

(
η−2|min (ρ, γ −1)|4−4H

)
,

E

[
‖Lε

z
∗L̃ε∗

z θ‖2
2

]
� C

(
η−2|min (ρ, γ −1)|4−4H

)
,

E

[
‖L̃ε∗

z L̃ε∗
z θ‖2

2

]
� C

(
η−4|min (ρ, γ −1)|4−4H

)
,

E

∥∥∥Lε
z
∗L̃ε∗

z L̃ε∗
z θ

∥∥∥
2

2
� C

(
η−4|min (ρ, γ −1)|6−6H

)
,

where the constant C is independent of ρ, η, γ and L is the radius of the
ball containing the support of F−1

2 θ .

4.1. Tightness

In the sequel we will adopt the following notation

fz ≡ f (
〈
Wε

z , θ
〉
), f ′

z ≡f ′(
〈
Wε

z , θ
〉
), f ′′

z ≡f ′′(
〈
Wε

z , θ
〉
),

∀f ∈C∞(R). (72)

Namely, the prime stands for the differentiation w.r.t. the original argument
(not z) of f,f ′ etc. Let L denote the radius of the ball containing the sup-
port of F−1

2 θ . Let all the constants c, c′, c1, c2, . . . etc., in the sequel be
independent of ρ, η, γ and ε and depend only on z0, θ,‖W0‖2 and f .

First we note that since S is dense in L2(R2d) and ‖Wε
z ‖2 �‖W0‖2,∀z>

0, the tightness of the family of L2(R2d)-valued processes {Wε,0<ε <1} in
the Skorohod space D([0,∞);L2

w(R2d) is equivalent to the tightness of the
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family in the Skorohod space D([0,∞);S ′) as distribution-valued processes.
According to ref. 7, a family of processes {Wε,0 < ε < 1} ⊂ D([0,∞);S ′)
is tight if and only if for every test function θ ∈S the family of processes
{〈Wε, θ〉 ,0<ε<1}⊂D([0,∞);R) is tight. With this remark we can now use
the tightness criterion of ref. 11. (Chap. 3, Theorem 4) for finite dimensional
processes, namely, we will prove: First,

lim
N→∞

lim sup
ε→0

P{sup
z<z0

| 〈Wε
z , θ

〉 |�N}=0, ∀z0 <∞. (73)

Second, for each f ∈C∞(R) there is a sequence f ε
z ∈D(Aε) such that for

each z0 <∞{Aεf ε
z ,0<ε <1,0<z<z0} is uniformly integrable and

lim
ε→0

P{sup
z<z0

|f ε
z −f (

〈
Wε

z , θ
〉
)|� δ}=0, ∀δ >0. (74)

Then it follows that the laws of {〈Wε, θ〉 ,0 <ε < 1} are tight in the space
of D([0,∞);R) and hence {Wε

z } is tight in D([0,∞);L2
w(R2d)).

To prove the tightness in the space C([0,∞);L2
w(R2d) we only need

to note first that Wε
z ∈C([0,∞);L2

w(R2d) (see the construction of solution)
and second that the Skorohod metric and the uniform metric induce the
same topology on C([0,∞);L2

w(R2d)).
Condition (73) is satisfied because the L2-norm is preserved.
We shall construct a test function of the form f ε

z =fz +f ε
1,z

+f ε
2,z

+
f ε

3,z
. First we construct the first perturbation f ε

1,z
. Let

Ṽ ε
z = Ṽz/ε2 .

Recall that

AεṼ ε
z =−ε−2V ε

z .

Define the first perturbation as

f ε
1,z ≡ 1

ε

∫ ∞

z

f ′
z

〈
Wε

z ,E
ε
zLε∗

s θ
〉
ds. (75)

We have

f ε
1,z = εf ′

z

〈
F−1

2 Wε
z , γ −1δ21

∫ ∞

z

Ez[V ε
s ]ds F−1

2 θ

〉

= εf ′
z

〈
F−1

2 Wε
z , γ −1δ21Ṽ

ε
z F−1

2 θ
〉

= εf ′
z

〈
Wε

z , L̃ε∗
z θ

〉
.



570 Fannjiang

Proposition 1.

lim
ε→0

sup
z<z0

E|f ε
1,z|=0, lim

ε→0
sup
z<z0

|f ε
1,z|=0 in probability.

Proof. First

E[|f ε
1,z|] � ε‖f ′‖∞‖W0‖2E‖L̃ε

zθ‖2 (76)

� cε‖f ′‖∞‖W0‖2 sup
|x|,|y|�L

E
1/2

[
γ −1δ21Ṽ

ε
z (x,y)

]2

= O
(
εη−1|min (ρ, γ −1)|1−H

)
, (77)

which is of the following order of magnitude:




ε if η,ρ held fixed,
ε if γ, η held fixed,
εη−1 if γ or ρ held fixed,
ε|min (ρ, γ −1)|1−H if η is held fixed

(78)

and vanishes in the respective regimes. Second, we have

sup
z<z0

|f ε
1,z| � ε‖f ′‖∞‖W0‖2 sup

z<z0

γ −1‖δ21Ṽ
ε
z F−1

2 θ‖2

� cε1/2 sup
|x|,|y|�L

E
1/2|γ −1δ21Ṽ

ε
z (x,y)|2

= c′ε1/2η−1|min (ρ, γ −1)|1−H (79)

by Assumption 4, with a random constant c′ possessing finite moments.
On the right side of (79) is of the following order of magnitude:




ε1/2 if η,ρ held fixed,
ε1/2 if γ, η held fixed,
ε1/2η−1 if ρ or γ held fixed,
ε1/2|min (ρ, γ −1)|1−H if η is held fixed,

(80)

which vanishes in the respective regimes. On The right side of (79) now
converges to zero in probability by a simple application of Chebyshev’s
inequality and (69).
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A straightforward calculation yields

Aεf ε
1 = −εf ′

z

〈
Wε

z ,

[
p ·∇ + 1

ε
Lε

z
∗
]

L̃ε∗
z θ

〉
− 1

ε
f ′

z

〈
Wε

z ,Lε
z
∗
θ
〉

+εf ′′
z

〈
Wε

z ,Aεθ
〉 〈

Wε
z , L̃ε∗

z θ
〉
,

where Aεθ denotes

Aεθ =−p ·∇xθ − 1
ε
Lε

z
∗
θ

cf. (50). Hence

Aε
[
fz+f ε

1,z

]
= f ′

z

〈
Wε

z ,p ·∇xθ
〉+f ′

z

〈
Wε

z ,Lε
z
∗L̃ε∗

z θ
〉
+f ′′

z

〈
Wε

z ,Lε
z
∗
θ
〉 〈

Wε
z , L̃ε∗

z θ
〉

+ε
[
f ′

z

〈
Wε

z ,p ·∇xL̃ε∗
z θ

〉
+f ′′

z

〈
Wε

z ,p ·∇xθ
〉 〈

Wε
z , L̃ε∗

z θ
〉]

= Aε
1(z)+Aε

2(z)+Aε
1(z)+Rε

1(z),

where Aε
2(z) and Aε

3(z) are the coupling terms.

Proposition 2.

lim
ε→0

sup
z<z0

E|Rε
1(z)|=0.

Proof. By Lemma 2 we have

|Rε
1| � ε‖f ′′‖∞‖W0‖2

2

[
‖p ·∇xθ‖2‖L̃ε∗

z θ‖2 +‖p ·∇x(L̃ε∗
z θ)‖2

]

= O
(
η−1(|min (ρ, γ −1)|1−H +ρ2−H )

)
, (81)

which is of the following order of magnitude




ε if η,ρ held fixed,
ερ2−H if η, γ held fixed,
εη−1 if ρ is held fixed,
εη−1ρ2−H if γ held fixed,
ε(|min (ρ, γ −1)|1−H +ρ2−H ) if η held fixed

(82)

and vanishes in the respective regimes.
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We introduce the next perturbations f ε
2,z

, f ε
3,z

. Let

A
(1)

2 (φ) ≡
∫

φ(x,p)Q1(θ ⊗ θ)(x,p,y,q)φ(y,q) dx dp dy dq, (83)

A
(1)

1 (φ) ≡
∫

Q′
1θ(x,p)φ(x,p) dx dp, (84)

where

Q1(θ ⊗ θ)(x,p,y,q) = E

[
Lε

z
∗
θ(x,p)L̃ε∗

z θ(y,q)
]

(85)

and

Q′
1θ(x,p)=E

[
Lε

z
∗L̃ε∗

z θ(x,p)
]
,

where the operator L̃ε∗
z is defined as in (61). Note that Q1θ and Q′

1θ are
O(1) terms because of (59).

Clearly, we have

A
(1)

2 (φ)=E

[〈
φ,Lε

z
∗
θ
〉 〈

φ, L̃ε∗
z θ

〉]
. (86)

Define

f ε
2,z ≡f ′′

z

∫ ∞

z

E
ε
z

[〈
Wε

z ,Lε∗
s θ

〉 〈
Wε

z , L̃ε∗
s θ

〉
−A

(1)

2 (Wε
z )
]

ds

f ε
3,z ≡f ′

z

∫ ∞

z

E
ε
z

[〈
Wε

z ,Lε∗
s L̃ε∗

s θ
〉
−A

(1)

3 (Wε
z )
]

ds.

Let

Q2(θ ⊗ θ)(x,p,y,q)≡E

[
L̃ε∗

z θ(x,p)L̃ε∗
z θ(y,q)

]

and

Q′
2θ(x,p)=E

[
L̃ε∗

z L̃ε∗
z θ(x,p)

]
.
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Let

A
(2)

2 (φ) ≡
∫

φ(x,p)Q2(θ ⊗ θ)(x,p,y,q)φ(y,q) dx dp dy dq, (87)

A
(2)

1 (φ) ≡
∫

Q′
2θ(x,p)φ(x,p) dx dp, (88)

we then have

f ε
2,z = ε2

2
f ′′

z

[〈
Wε

z , L̃ε∗
z θ

〉2 −A
(2)

2 (Wε
z )

]
, (89)

f ε
3,z = ε2

2
f ′

z

[〈
Wε

z , L̃ε∗
z L̃ε∗

z θ
〉
−A

(2)

3 (Wε
z )
]
. (90)

Using Assumption (66) and the Cauchy–Schwartz inequality one can
easily prove the following.

Proposition 3.

lim
ε→0

sup
z<z0

E|f ε
j,z|=0, lim

ε→0
sup
z<z0

|f ε
j,z|=0, j =2,3.

We have

Aεf ε
2,z = f ′′

z

[
− 〈

Wε
z ,Lε

z
∗
θ
〉 〈

Wε
z , L̃ε∗

z θ
〉
+A

(1)

2 (Wε
z )
]
+Rε

2(z),

Aεf ε
3,z = f ′

z

[
−
〈
Wε

z ,Lε
z
∗L̃ε∗

z θ
〉
+A

(1)

3 (Wε
z )
]
+Rε

3(z)

with

Rε
2(z) = ε2

2
f ′′′

z

[〈
Wε

z ,p ·∇xθ
〉+ 1

ε

〈
Wε

z ,Lε
z
∗
θ
〉] [〈

Wε
z , L̃ε∗

z θ
〉2 −A

(2)

2 (Wε
z )

]

+ε2f ′′
z

〈
Wε

z , L̃ε∗
z θ

〉 [〈
Wε

z ,p ·∇x(L̃ε∗
z θ)

〉
+ 1

ε

〈
Wε

z ,Lε
z
∗L̃ε∗

z θ
〉]

−ε2f ′
z

[〈
Wε

z ,p ·∇x(G
(2)
θ Wε

z )
〉
+ 1

ε

〈
Wε

z ,Lε
z
∗
G

(2)
θ Wε

z

〉]
, (91)

where G
(2)
θ denotes the operator

G
(2)
θ φ ≡

∫
Q2(θ ⊗ θ)(x,p,y,q)φ(y,q) dy d q.
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Similarly

Rε
3(z) = ε2f ′

z

[〈
Wε

z ,p ·∇x(L̃ε∗
z L̃ε∗

z θ)
〉
+ k̃

ε

〈
Wε

z ,Lε
z
∗L̃ε∗

z L̃ε∗
z θ

〉]

+ε2

2
f ′′

z

[〈
Wε

z ,p ·∇xθ
〉+ 1

ε

〈
Wε

z ,Lε
z
∗
θ
〉] [〈

Wε
z , L̃ε∗

z L̃ε∗
z θ

〉
−A

(2)

1 (Wε
z )
]

−ε2f ′
z

[〈
Wε

z ,p ·∇x(Q′
2θ)

〉+ 1
ε

〈
Wε

z ,Lε
z
∗Q′

2θ
〉]

. (92)

Proposition 4.

lim
ε→0

sup
z<z0

E|Rε
2(z)|=0, lim

ε→0
sup
z<z0

E|Rε
3(z)|=0.

Proof. Part of the argument is analogous to that given for Proposi-
tion 3. The additional estimates that we need to consider are the following.

In Rε
2 (91):

sup
z<z0

ε2
E

∣∣∣
〈
Wε

z ,p ·∇x(G
(2)
θ Wε

z )
〉∣∣∣

� cε2γ −2‖θ‖2‖W0‖2
2

∥∥∥∥∇y ·∇xF−1
2 θE

[
δ21Ṽ

ε
z

]2
∥∥∥∥

2

� c‖θ‖2‖W0‖2
2ε

2γ −1
∥∥∥∥[F−1

2 ∇x ·∇xθ ](x,y)E
[
δ21Ṽ

ε
z

]2
(y)

∥∥∥∥
2

+c‖θ‖2‖W0‖2
2ε

2γ −2
∥∥∥∥[F−1

2 ∇xθ ](x,y) ·∇yE

[
δ21Ṽ

ε
z

]2
(y)

∥∥∥∥
2

� c‖θ‖2‖W0‖2
2ε

2γ −1 sup
|y|�L

E

[
δ21Ṽ

ε
z

]2
(y)+ c‖θ‖2‖W0‖2

2ε
2γ −2

sup
|y|�L

∣∣∣∣∇yE

[
δ21Ṽ

ε
z

]2
(y)

∣∣∣∣

� O
(
ε2η−2γ |min (ρ, γ −1)|2−2H + ε2η−2ρ1−H |min (ρ, γ −1)|1−H

)

by Lemma 2, where L is the radius of the ball containing the support of
θ . Further delineation yields the following order-of-magnitude estimates




ε2 if η,ρ held fixed,
ε2ρ1−H if η, γ held fixed,
ε2η−2ρ1−H if γ held fixed,
ε2η−2 if ρ held fixed,
ε2ρ1−H |min (ρ, γ −1)|1−H if η held fixed.
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Consider the next term:

sup
z<z0

εE

∣∣∣
〈
Wε

z ,Lε
z
∗
G

(2)
θ Wε

z

〉∣∣∣

� cε2γ −3‖W0‖2E

{∥∥∥δ21V
ε
z (x,y)F−1

2 θ(x,y)

×
∫

E

[
δ21Ṽ

ε
z (x,y)δ21Ṽ

ε
z (x′,y′)

]
F−1

2 θ(x′,y′)F−1
2 Wε

z (x′,y′)dx′dy′
∥∥∥∥

2

}

� cε2γ −3‖W0‖2E

{∥∥∥∥δ21V
ε
z (x,y)F−1

2 θ(x,y)E
[
δ21Ṽ

ε
z (x,y)

]2

×
∫ ∣∣∣F−1

2 θ(x′,y′)F−1
2 Wε

z (x′,y′)
∣∣∣dx′dy′

∥∥∥∥
2

}

� cε2γ −3‖θ‖2‖W0‖2
2E

∥∥∥∥δ21V
ε
z (x,y)F−1

2 θE

[
δ21Ṽ

ε
z

]2
∥∥∥∥

2

� O
(
ε2η−2|min (ρ, γ −1)|3−3H

)

by Corollary 3.
In Rε

3 (92):

sup
z<z0

εE

∣∣∣
〈
Wε

z ,Lε
z
∗L̃ε∗

z L̃ε∗
z θ

〉∣∣∣ � ε‖W0‖2 sup
z<z0

√
E

∥∥∥Lε
z
∗L̃ε∗

z L̃ε∗
z θ

∥∥∥
2

2

= O

(
εγ −3 sup

|y|�L

E

∣∣∣δ21Ṽ
ε
z

∣∣∣
2
(y)E1/2 ∣∣δ21V

ε
z

∣∣2 (y)

)

= O
(
εη−2|min (ρ, γ −1)|3−3H

)
,

by (72) and Lemma 2. The preceding two terms can be estimated from
above by the following order of magnitude:




ε if ρ and η held fixed,
ε if γ and η held fixed,
εη−2 if γ or ρ held fixed,
ε|min (ρ, γ −1)|3−3H if η held fixed,

ε2
E
∣∣〈Wε

z ,p ·∇x(Q′
2θ)

〉∣∣ � ε2
√

E
∣∣〈Wε

z ,p ·∇x(Q′
2θ)

〉∣∣2

� cε2γ −2‖W0‖2

∥∥∥∥∇y ·∇xE

[
δ21Ṽ

ε
z (x,y)

]2F−1
2 θ(x,y)

∥∥∥∥
2
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= O

(
ε2γ −2

E|y|�L

∣∣∣∣∇yE

[
δ21Ṽ

ε
z

]2
(y)

∣∣∣∣
)

= O
(
ε2η−2ρ1−H |min (ρ, γ −1)|1−H

)
, (93)

which in the various regimes has the following order of magnitude




ε2 if ρ and η held fixed,
ε2ρ1−H if γ and η held fixed,
ε2η−2ρ1−H if γ held fixed,
ε2η−2 if ρ held fixed,
ε2ρ1−H |min (ρ, γ −1)|1−H if η held fixed,

εE
∣∣〈Wε

z ,Lε
z
∗Q′

2θ
〉∣∣

� ε

√
E
∣∣〈Wε

z ,Lε
z
∗Q′

2θ
〉∣∣2

�cε2γ −3‖W0‖2E

∥∥∥∥δ21V
ε
z (x,y)E

[
δ21Ṽ

ε
z (x,y)

]2

F−1
2 θ(x,y)

∥∥∥∥
2

=O

(
ε2γ −3 sup

|y|�L

E

∣∣∣δ21Ṽ
ε
z

∣∣∣
2
(y)E1/2 ∣∣δ21V

ε
z

∣∣2 (y)

)

=O
(
ε2η−2|min (ρ, γ −1)|3−3H

)
(94)

by Lemma 2.

Consider the test function f ε
z =fz +f ε

1,z
+f ε

2,z
+f ε

3,z
. We have

Aεf ε
z = f ′

z

〈
Wε

z ,p ·∇xθ
〉+f ′′

z A
(1)

2 (Wε
z )+f ′A(1)

1 (Wε
z )+Rε

2(z)+Rε
3(z)+Rε

1(z).

(95)

Set

Rε(z)=Rε
1(z)+Rε

2(z)+Rε
3(z). (96)

It follows from Propositions 2 and 4 that

lim
ε→0

sup
z<z0

E|Rε(z)|=0.

For the tightness it remains to show
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Proposition 5. {Aεf ε
z } are uniformly integrable.

Proof. Indeed, each term in the expression (95) is uniformly integra-
ble. We only need to be concerned with terms in Rε(z) since other terms
are obviously uniformly integrable because Wε

z is uniformly bounded in
the square norm. But since the previous estimates establish the uniform
boundedness of the second moments of the corresponding terms, the uni-
form integrability of the terms follow.

4.2. Identification of the Limit

Our strategy is to show directly that in passing to the weak limit the lim-
iting process solves the martingale problem formulated in Section 3.1. The
uniqueness of the martingale solution mentioned in Section 2.2 then identi-
fies the limiting process as the unique L2(R2d)-valued solution to the initial
value problem of the stochastic integral-PDE of the white-noise model.

Recall that for any C2-function f

Mε
z (θ) = f ε

z −
∫ z

0
Aεf ε

s ds

= fz +f ε
1 (z)+f ε

2 (z)+f ε
3 (z)−

∫ z

0
f ′

z

〈
Wε

z ,p ·∇xθ
〉
ds

−
∫ z

0

[
f ′′

s A
(1)

2 (Wε
s )+f ′

sA
(1)

1 (Wε
s )
]

ds −
∫ z

0
Rε(s) ds (97)

is a martingale. The martingale property implies that for any finite
sequence 0 < z1 < z2 < z3 < · · · < zn � z, C2-function f and bounded con-
tinuous function h with compact support, we have

E
{
h
(〈
Wε

z1
, θ
〉
,
〈
Wε

z2
, θ
〉
, . . . ,

〈
Wε

zn
, θ
〉) [

Mε
z+s(θ)−Mε

z (θ)
]} = 0,

∀s >0, z1 � z2 � · · ·� zn � z. (98)

Let

Āfz ≡f ′
s

[〈Wz,p ·∇xθ〉+ Ā1(Wz)
]+f ′′

z Ā2(Wz),

where

Ā2(φ) = limρ→∞ A
(1)

2 (φ) =
∫

Q(θ ⊗ θ)(x,p,y,q)φ(x,p)φ(y,q)dx dp dy dq,

(99)

Ā1(φ) = limρ→∞ A
(1)

1 (θ) =
∫

Q0(θ)(x,p)φ(x,p)dx dp, (100)
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where Q(θ ⊗ θ) and Q0(θ) are given by (26) and (25), respectively. Equa-
tions (99) and (100) are obtained by an explicit and tedious calculation.

For ρ → ∞, γ → 0 as ε → 0 the limits in (99) are not well-defined
unless H ∈ (0,1/2) in the worst case scenario allowed by (6). Likewise, the
convergence does not hold for H ∈ [1/2,1) when η → 0 in the worst case
scenario allowed by (6).

In view of the results of Propositions 1–4 we see that f ε
z and Aεf ε

z

in (97) can be replaced by fz and Āfz, respectively, modulo an error that
vanishes as ε→0. With this and the tightness of {Wε

z } we can pass to the
limit ε→0 in (98).We see that the limiting process satisfies the martingale
property that

E
{
h
(〈
Wz1 , θ

〉
,
〈
Wz2 , θ

〉
, . . . ,

〈
Wzn, θ

〉)
[Mz+s(θ)−Mz(θ)]

}=0, ∀s >0,

where

Mz(θ)=fz −
∫ z

0
Āfs ds. (101)

Then it follows that

E [Mz+s(θ)−Mz(θ)|Wu,u� z]=0, ∀z, s >0,

which proves that Mz(θ) is a martingale.
Note that

〈
Wε

z , θ
〉

is uniformly bounded:

∣∣〈Wε
z , θ

〉∣∣�‖W0‖2‖θ‖2

so we have the convergence of the second moment

lim
ε→0

E

{〈
Wε

z , θ
〉2}=E

{
〈Wz, θ〉2

}
.

Using f (r)= r and r2 in (101) we see that

M(1)
z (θ)=〈Wz, θ〉−

∫ z

0

[〈Ws,p ·∇xθ〉− Ā3(Ws)
]

ds

is a martingale with the quadratic variation

[
M(1)(θ),M(1)(θ)

]
z
=
∫ z

0
Ā2(Ws) ds =

∫ z

0

〈
Ws,KθWs

〉
ds,

where Kθ is defined as in (25).
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5. APPENDIX A. PROOF OF LEMMA 2

(i) Estimation of sup |z|�z0
|y|�L

E

[(
δ21V

ε
z

)2
]
(y) : We have that for γρ �1

sup
|z|�z0

E

[(
δ21V

ε
z (x,y)

)2
]

�
∫

|γ y ·k|2 �(η,ρ)(ξ,k)dξdk

� c0γ
2|y|2

∫

|ξ |�ρ

∫

|k|�ρ

(η2 +|k|2 +|ξ |2)−H−(d+1)/2|k|d+1d|k|dξ

� c3γ
2|y|2

(
η2−2H +ρ2−2H

)
.

For ργ � 1 we divide the domain of integration into I0 ={|k|� γ −1} and
I1 = {|k| � γ −1} and estimate their contributions separately. For I0 the
upper bound is similar to the above, namely, we have

∫

I0

4| sin (γ y ·k/2)|2�(η,ρ)(ξ,k)dξdk � c4γ
2|y|2

(
η2−2H +γ −2+2H

)
.

For I1 we have instead that

∫

I1

4| sin (γ y ·k/2)|2�(η,ρ)(ξ,k)dξdk � 4
∫

I1

�(η,ρ)(ξ,k)dξdk

� c7

(
γ 2H +ρ−2H

)
.

Put together, the upper bound becomes

sup
|z|�z0

|x|,|y|�L

E

[(
δ21V

ε
z (x,y)

)2
]

� c8γ
2
∣∣∣min (γ −1, ρ)

∣∣∣
2−2H

, γ, η�1�ρ.

(ii) Estimation of sup|z|�z0
E

[
Ṽ ε

z (x)
]2

: It follows from the argument
for Corollary 1 and Assumption 2 that

E

[
Ṽ ε

z (x)
]2

�
(∫ ∞

0
rη,ρ(t)dt

)2

E[V ε
z ]2

� cη−2η−2H .
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(iii) Estimation of sup |z|�z0
|y|�L

E

[(
δ21Ṽ

ε
z

)2
]

(y): First note that the cor-

relation coefficient for δ21Ṽ
ε
z is bounded from above by crη,ρ(t) for some

constant c>0. Then we have as in (i) and (ii) that

E

[
δ21Ṽ

ε
z (x)

]2
� c1

(∫ ∞

0
rη,ρ(t)dt

)2

E[δ21V
ε
z ]2

� c2η
−2γ 2

∣∣∣min (γ −1, ρ)

∣∣∣
2−2H

.

(iv) Estimation of sup |z|�z0
|y|�L

∣∣∣∣∇yE

[
δ21Ṽ

ε
z

]2
(y)

∣∣∣∣: By the Cauchy–

Schwartz inequality and the preceding calculation we have

sup
|z|�z0
|y|�L

∣∣∣∣∇yE

[
δ21Ṽ

ε
z

]2
(y)

∣∣∣∣

� c1

√
γ 2E

[
∇xṼ ε(x +γ y/2)+∇xṼ ε(x −γ y/2)

]2
√

E

[
δ21Ṽ

ε(x,y)
]2

� c3

(∫ ∞

0
rη,ρ(t)dt

)2

γ E
1/2 [∇xV ε]2 E

1/2 [δ21V
ε
z (x,y)

]2

� c4η
−2γ 2ρ1−H |min (ρ, γ −1)|1−H

(v) Estimation of sup|z|�z0
E‖p · ∇x(L̃ε∗

z θ)‖2
2: A similar line of rea-

soning and a straightforward spectral calculation yield that

E‖p ·∇x(L̃ε∗
z θ)‖2

2 = E‖∇y ·∇xγ −1δ21Ṽ
ε
z F−1

2 θ‖2
2

� c1E‖∇2
xṼ ε

z F−1
2 θ‖2

2

� c2η
−2

E

[
∇2

xV ε
z

]2

� c3η
−2ρ4−2H .
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6. APPENDIX B. EXACT AND ASYMPTOTIC SOLUTIONS

FOR THE GEOMETRICAL OPTICS

In this section we construct the Green function for the geometrical
optics equation

∂W̄z

∂z
+p ·∇xW̄z = −k̃

(
−i∇p + β

2k̃
x
)

·D(0) ·
(

−i∇p + β

2k̃
x
)

W̄z(x,p)

−β2D0(0)W̄z(x,p).

For simplicity of notation, let us assume isotropy of the medium,
namely �(0,p) = �(0, |p|) and hence D(0) = D(0), a scalar. Taking the
inverse Fourier transform F−1

2 in p we obtain

∂

∂z
Ŵ = i∇x ·∇yŴ − D(0)

k̃

∣∣∣∣−k̃y + β

2
x
∣∣∣∣
2

Ŵ −β2D0(0)Ŵ . (B.1)

Introducing the new variables

y1 = k̃y + β

2
x, (B.2)

y2 = k̃y − β

2
x, (B.3)

we rewrite the above equation as

∂

∂z
Ŵ = ik̃β

2

(
∇2

1 −∇2
2

)
Ŵ − D(0)

k̃
|y2|2Ŵ −β2D0(0)Ŵ , (B.4)

where ∇1,∇2 are the gradients with respect to y1,y2, respectively.
Consider the function

W̃ (z,p1,y2)=eβ2D0(0)zeik̃β|p1|2z/2 1
(2π)d

∫
Ŵ (z,

y1 −y2

β
,

y1+y2

2k̃
)e−iy1·p1 dy1,

(B.5)

which satisfies the equation

∂

∂z
W̃ =− ik̃β

2
∇2

2W̃ − D(0)

k̃
|y2|2W̃ . (B.6)
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Equation (B.6) is just the Schrödinger equation with an imaginary, qua-
dratic potential and can be solved by separating the variables y2 =
(y1, y2, . . . , yd), solving the one-dimensional version of the equation:

∂

∂z
W̃j =− ik̃β

2
∂2

∂y2
j

W̃j − D(0)

k̃
y2
j W̃j , j =1,2, . . . , d (B.7)

and forming tensor product
∏d

j=1 Wj(yj ).
We begin by searching for solutions of the Gaussian form

W̃j = e−A(z)−B(z)|yj −C(z)|2 , (B.8)

where A,B,C are complex-valued functions of z, parametrized by p1.
Substituting (B.8) into Eq. (B.6) and comparing the coefficients we obtain
the ODEs governing A,B,C:

B ′ = D(0)

k̃
+ i2k̃βB2, (B.9)

C′ = −D(0)

k̃B
C, (B.10)

A′ = D(0)C2

k̃
− ik̃βB, (B.11)

which can be solved in the order of B,C,A and yield

B(z) = 1

k̃(1− i)

√
D(0)

β

Ke2
√

D(0)β(1−i)z +1

Ke2
√

D(0)β(1−i)z −1
,

(B.12)
C(z) = C(0) exp

[
−D(0)

k̃

∫ z

0
B(s)−1ds

]
,

where the constant K is given by

K =
1+ (1+ i)/(2B(0)k̃)

√
D(0)

β

1− (1+ i)/(2B(0)k̃)

√
D(0)

β

.
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First we look for the Green function in the coordinates y1,y2. To this
end, we set K =1 corresponding to B(0)=+∞, j =1,2, . . . , d, and write

A(z)=−ik̃β

∫ z

1
B(s)ds + D(0)

k̃

∫ z

0
C2(s)ds, z>0

with

B(z) = 1

k̃(1− i)

√
D(0)

β

e2
√

D(0)β(1−i)z +1

e2
√

D(0)β(1−i)z −1

= −1

k̃(1+ i)

√
D(0)

β
cot

[√
D(0)β(1+ i)z

]
.

Then a straightforward calculation shows that with a suitable normalizing
constant c0 the Green function is given by

G(z,y1,y2,y′
1,y′

2)

= c0e
−β2D0(0)ze

idk̃β
∫ z

1 B(s)ds− D(0)

k̃

∫ z
∞ |C|2(s)ds

e−B(z)|y2−C(z)|2

×
∫

e−ik̃β|p1|2z/2eip1·(y1−y′
1)dp1

= c0

(
2π

izk̃β

)d

exp
[
−β2D0(0)z

]
exp

[
idk̃β

∫ z

1
B(s)ds

]

×exp
[−D(0)

k̃

∫ z

0
C2(s)ds

]
exp

[
i
|y1 −y′

1|2
2zk̃β

]
exp

[
−B(z)|y2 −C(z)|2

]

= c0


 2π

izk̃β sin1/2
[√

D(0)β(1+ i)z
]



d

e−β2D0(0)z exp

[
i
|y1 −y′

1|2
2zk̃β

]

× exp

[
− |y′

2|2
(1+ i)k̃

√
D(0)

β
tan

(√
βD(0)(1+ i)z

)]

× exp
[

1

k̃(1+ i)

√
D(0)

β
cot

(√
D(0)β(1+ i)z

)

×
∣∣∣∣∣∣
y2 − y′

2

cos
(√

D(0)β(1+ i)z
)
∣∣∣∣∣∣

2 ]
, (B.13)
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where C(z) = (Cj (z)) is given by the formula (B.13) with the initial data
C(0)=y′

2. The general solution for Eq. (B.1) can then be expressed as

Ŵ (z,x,y) = (k̃β)d
∫

Ŵ0(x′,y′)

×G

(
z, k̃y + β

2
x, k̃y − β

2
x, k̃y′ + β

2
x′, k̃y′ − β

2
x′
)

dx′ dy′.

With the change of coordinates (39) and (40)

x ≈
√

k̃

2
(x1 +x2), y ≈

√
k̃

γ
(x1 −x2)− β

4k̃1/2
(x1 +x2), (B.14)

we can express the geometrical optics asymptotics γ � 1 of the mutual
coherence function as

�(z,x1,x2)

≈
(

k̃2

πγ 2β
√

z

)d

 (1+ i)

√
D(0)β

sin
[√

D(0)β(1+ i)z
]



d/2 ∫
exp

[
i

k̃2

2zβγ 2

∣∣x1 −x2 −x′
1 +x′

2

∣∣2
]

× exp


− 1

1+ i

∣∣∣∣∣
k̃

γ
(x′

1 −x′
2)− β

2
(x′

1 +x′
2)

∣∣∣∣∣
2 √

D(0)

β
tan

(√
βD(0)(1+ i)z

)

× exp
[

1
1+ i

√
D(0)

β
cot

(√
D(0)β(1+ i)z

)∣∣∣∣
k̃

γ
(x1 −x2)

−β

2
(x1 +x2)−

k̃
γ
(x′

1 −x′
2)− β

2 (x′
1 +x′

2)

cos
(√

D(0)β(1+ i)z
)
∣∣∣∣
2]

×�0(x′
1,x′

2; k̃1, k̃2)dx′
1 dx′

2 × exp
[
−β2D0(0)z

]
.

Next we consider the long distance asymptotics for z�1. We note the
following asymptotics:

B(z) ∼ 1+ i

2k̃

√
D(0)

β
, (B.15)

C(z) ∼ C(0)e−
√

βD(0)(1−i)z, (B.16)

A(z) ∼ 1− i

2

√
βD(0)z (B.17)
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and hence the leading order asymptotics for the Green function

G(z,y1,y2,y′
1,y′

2) ∼ c0

(
2π

izk̃β

)d

exp
[
−β2D0(0)z

]
exp

[
− 1− i

2
d
√

βD(0)z

]

× exp

[
i
|y1 −y′

1|2
2zk̃β

]
exp

[
− 1+ i

2k̃

√
D(0)

β

(
|y2|2 +|y′

2|2
)]

. (B.18)

Using the leading asymptotics of (B.15) and (B.17) in the general for-
mula we find the long distance asymptotics for the mutual coherence func-
tion �

�(z,x1,x2) ∼
(

(1+ i)
√

D(0)βk̃4

π2γ 4β2z

)d/2

exp [−β2D0(0)z]

× exp
[
−1− i

2
d
√

βD(0)z

]

× exp


−1+ i

2

√
D(0)

β

∣∣∣∣∣
k̃

γ
(x1 −x2)− β

2
(x1 +x2)

∣∣∣∣∣
2



×
∫

exp


−1+ i

2

√
D(0)

β

∣∣∣∣∣
k̃

γ
(x′

1 −x′
2)− β

2
(x′

1 +x′
2)

∣∣∣∣∣
2



× exp

[
i

k̃2

2γ 2βz
|x1 −x2 −x′

1 +x′
2|2
]
�0(x′

1,x′
2; k̃1, k̃2)dx′

1 dx′
2

One sees from the above expression that the (rescaled) coherent band-
width βc is given by

βc ∼ 1
D(0)z2

, (B.19)

which is consistent with the results given in ref. 9, obtained by making the
plane-wave assumption.
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